

Materialdatenblatt

ALUMIDE[®] für EOSINT P

Allgemeines

Typischer Einsatzbereich von ALUMIDE[®] ist die Herstellung von steifen, metallisch anmutenden Bauteilen für Anwendungen im Automobilbau (z.B. Windkanaltests), für Werkzeugeinsätze zum Spritzen und Gießen von Kleinserien, für Anschauungsmodelle (metallische Optik), für den Lehren- und Vorrichtungsbau u.a.

Oberflächen von Bauteilen aus ALUMIDE[®] sind durch Schleifen, Polieren oder Beschichten veredelbar. Ein zusätzlicher Vorteil besteht darin, daß verschleißarme, werkzeugschonende Nachbearbeitungen mittels spanender Verfahren z.B. Fräsen, Bohren oder Drehen möglich sind.

ALUMIDE® eignet sich zur Verarbeitung auf folgenden Systemen:

➤ EOSINT P 700

mit oder ohne Pulverförderanlage P 380:

- ➤ FOSINT P 380
- > EOSINT P 360 mit Upgrade S&P
- ➤ EOSINT P 350/2 + Upgrade 99 + Upgrade S&P.

Die empfohlene Schichtdicke beträgt 0,15 mm. Um eine gleichbleibende Bauteilqualität sicher zu stellen, wird ausschließlich die Verwendung von Neupulver empfohlen.

Technische Daten

Allgemeine Pulvereigenschaften

Mittlere Korngröße	Laserbeugung	60	μm
Schüttdichte	DIN 53466	$0,64 \pm 0,04$	g/cm³
Dichte lasergesintert (ALU-mech)	EOS-Methode	1,36 ± 0,05	g/cm³

EOS GmbH - Electro Optical Systems

Materialdatenblatt

Mechanische Kennwerte

Zug-E-Modul	DIN EN ISO 527	3800 ± 150	N/mm²
Zugfestigkeit	DIN EN ISO 527	46 ± 3	N/mm²
Reißdehnung	DIN EN ISO 527	3,5 ± 1	0/0
Biege-E-Modul	DIN EN ISO 178	3000 ± 150	N/mm²
Biegefestigkeit	DIN EN ISO 178	74 ± 2	N/mm²
Charpy-Schlagzähigkeit	DIN EN ISO 179	29 ± 2	kJ/m²
Charpy-Kerbschlagzähigkeit	DIN EN ISO 179	4,6 ± 0,3	kJ/m²
Shore D-Härte	DIN 53505	76 ± 2	

Thermische Eigenschaften

Schmelzpunkt	DIN 53736	172 - 180	°C
Formbeständigkeitstemperatur	ASTMD648 (0,45 Mpa)	177,1	°C
Vicaterweichungstemperatur B/50	DIN EN ISO 306	169	°C
Wärmeleitfähigkeit (170 ° C)	Hitzedraht-Verfahren	0,5 - 0,8	W(mK) ⁻¹

Die mechanischen Eigenschaften können in Abhängigkeit von der X-, Y-, Z-Lage der Prüfkörper und den Belichtungsparametern variieren.

Die Angaben entsprechen dem heutigen Stand unserer Erkenntnisse. Sie haben nicht die Bedeutung, bestimmte Eigenschaften des Produktes oder die Eignung für einen konkreten Einsatzzweck zuzusichern.

© 2004 EOS GmbH – Electro Optical Systems. Alle Rechte vorbehalten.